Code No: 156AN JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year II Semester Examinations, February - 2023 DESIGN AND ANALYSIS OF ALGORITHMS (Common to CSE, ITE)

Time: 3 Hours

Max. Marks: 75

() = 14

Note: i) Question paper consists of Part A, Part B.

- ii) Part A is compulsory, which carries 25 marks. In Part A, Answer all questions.
- iii) In Part B, Answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART – A

		(25 Marks)
1.a)	What is an algorithm?	[2]
b)	Explain about big-oh notation.	[3]
c)	Define static space tree.	[2]
d)	Write and explain general iterative backtracking method	[3]
e)	What is the time complexity of all pairs shortest path?	[2]
f)	Explain about OBST.	[3]
g)	What is Greedy method?	[2]
h)	Distinguish between Prim's and Kruskal's algorithms.	[3]
i)	Define branch and bound technique.	[2]
j)	Explain about non-deterministic algorithms.	[3]
	PART – B	
	Noa	(50 Marks)
2 a)	Write and a train the general method of divide and conquer strategy	
2.a) b)	Derive the time complexity of Strassen's matrix multiplication	[5+5]
0)	OR	[3+3]
3 a)	Write and explain recursive algorithm of binary search method	
b)	What is space complexity? Explain with suitable examples	[5+5]
0)	what is space compressivy. Expraint whit burnable examples.	
4.a)	Describe recursive formulation of backtracking technique.	
b)	How to implement disjoint sets? Explain.	[5+5]
,	OR	
5.a)	Explain about 4-queens problem with backtrack solution.	
b)	Discuss about number of connected components of a graph using disjoint se	et union.
		[5+5]
6.	Use the function OBST to compute w(i, j), r(i, j), and c(i, j), $0 \le i$ identifier set (a1, a2, a3, a4) = (do, if, int, while) with p(1:4) = (3, q(0:4) = (2, 3, 1, 1, 1). Using the r(i, j)'s construct the optimal binary search	< $j \le 4$, for the 3, 1, 1) and tree. [10]

7. Discuss about all pairs shortest problem using dynamic programming. [10]

Download all NOTES and PAPERS at StudentSuvidha.com

8. Compute a minimum cost spanning tree for the graph shown below using a) Prim's algorithm and

b) Kruskal's algorithm.

[5+5]

