JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech III Year II Semester Examinations, February - 2023
 DESIGN AND ANALYSIS OF ALGORITHMS
 (Common to CSE, ITE)

Time: 3 Hours
Max. Marks: 75
Note: i) Question paper consists of Part A, Part B.
ii) Part A is compulsory, which carries 25 marks. In Part A, Answer all questions.
iii) In Part B, Answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

> PART - A
(25 Marks)
1.a) What is an algorithm?
b) Explain about big-oh notation.
c) Define static space tree.
d) Write and explain general iterative backtracking method.
e) What is the time complexity of all pairs shortest path?
f) Explain about OBST.
g) What is Greedy method?
h) Distinguish between Prim's and Kruskal's algorithms.
i) Define branch and bound technique.
j) Explain about non-determid istic algorithms.

PART - B
(50 Marks)
2.a) Write and extain the general method of divide-and-conquer strategy.
b) Derive the time complexity of Strassen's matrix multiplication.

OR

3.a) Write and explain recursive algorithm of binary search method.
b) What is space complexity? Explain with suitable examples.
4.a) Describe recursive formulation of backtracking technique.
b) How to implement disjoint sets? Explain.

OR

5.a) Explain about 4-queens problem with backtrack solution.
b) Discuss about number of connected components of a graph using disjoint set union.
6. Use the function OBST to compute $w(i, j), r(i, j)$, and $c(i, j), 0 \leq i<j \leq 4$, for the identifier set (a1, a2, a3, a4) $=($ do, if, int, while) with $p(1: 4)=(3,3,1,1)$ and $\mathrm{q}(0: 4)=(2,3,1,1,1)$. Using the $\mathrm{r}(\mathrm{i}, \mathrm{j})$'s construct the optimal binary search tree. [10]

OR

7. Discuss about all pairs shortest problem using dynamic programming.
8. Compute a minimum cost spanning tree for the graph shown below using
a) Prim's algorithm and
b) Kruskal's algorithm.

OR
9. Explain about single source shortest path problem in Greedy method.
10. Describe LC branch and bound solution of $0 / 1$ Knapsack problem in detail.

OR

11. Explain the following:
a) Nondeterministic knapsack algorithm
b) FIFO branch and bound.
